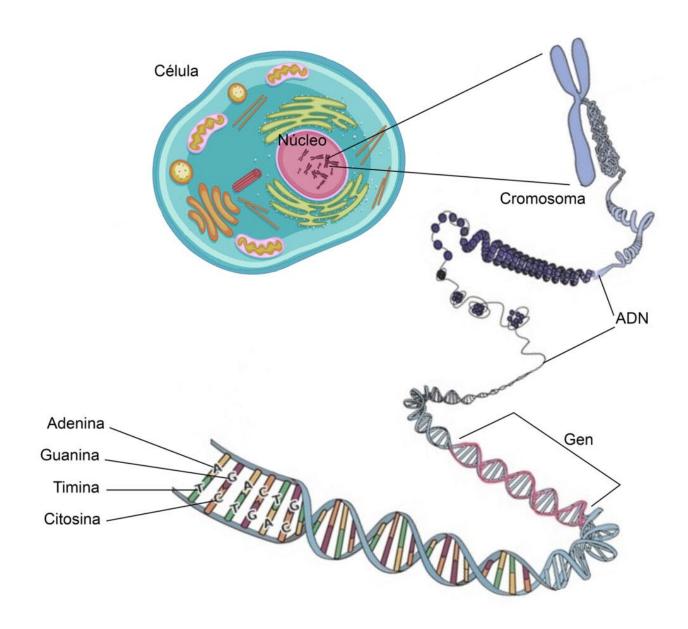
CLASE 16

Ácidos nucleicos

UC1 IBCMDocente Alejo Vázquez

Contenidos

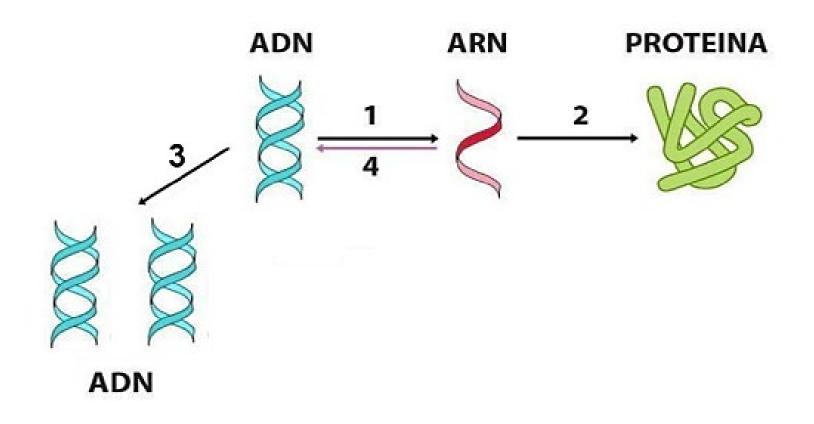
- 1 ADN y ARN
- 2 Propiedades de las moléculas informativas
- 3 Dogma central de la biología molecular
- 4 Nucleótidos
- 5 Modelo de la doble hélice
- 6 Replicación
- 7 Taller
- 8 Preguntas múltiple opción



Biomoléculas

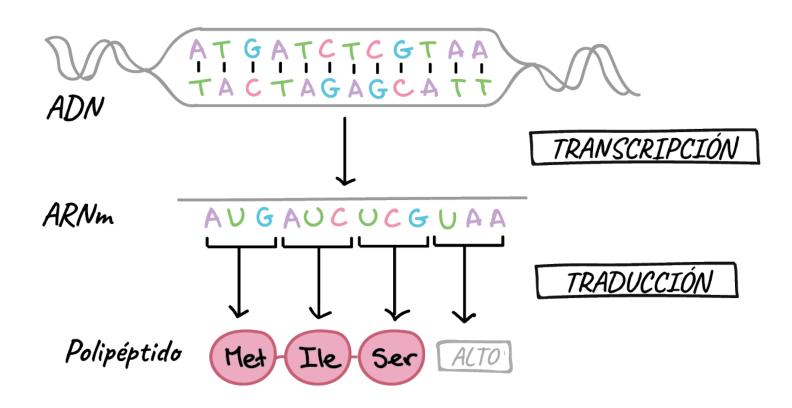
BIOMOLÉCULA	MONÓMERO	POLÍMERO
GLÚCIDOS	MONOSACÁRIDOS	POLISACÁRIDOS
LÍPIDOS	ÁCIDOS GRASOS	TAG, FOSFOLÍPIDOS, ETC
PROTEÍNAS	AMINOÁCIDOS	PÉPTIDOS, PROTEÍNAS
ÁCIDOS NUCLEICOS	NUCLEÓTIDOS	ADN, ARN

ADN y ARN



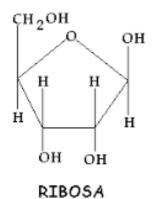
Propiedades de las moléculas informativas

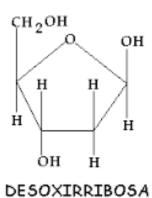
- Logran almacenar la información de manera legible
- Son estables y pueden reproducirse
- Son capaces de transmitir esa información (expresión)
- Son capaces de modificarse (variación)

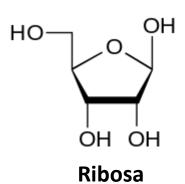


Dogma central de la biología molecular

Dogma central de la biología molecular



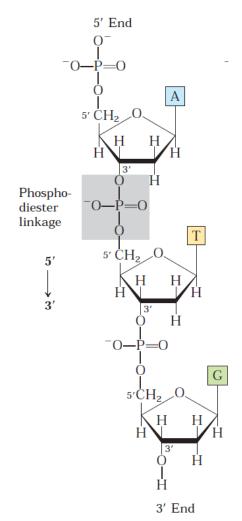

Nucleótidos

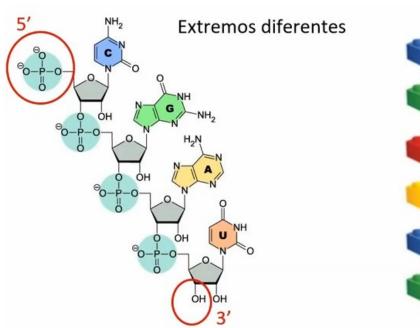

- Son los monómeros de los ácidos nucleicos.
- Estructuralmente van a estar formados por tres grupos moleculares diferentes: un grupo fosfato, una azúcar y una base nitrogenada.
- En el caso del ADN, los monómeros van a ser los desoxirribonucleótidos
- Para el ARN, los monómeros serán los ribonucleótidos.
- La diferencia radica en el azúcar que compone al nucleótido: ribosa y desoxirribosa.

Estructura

Desoxirribosa

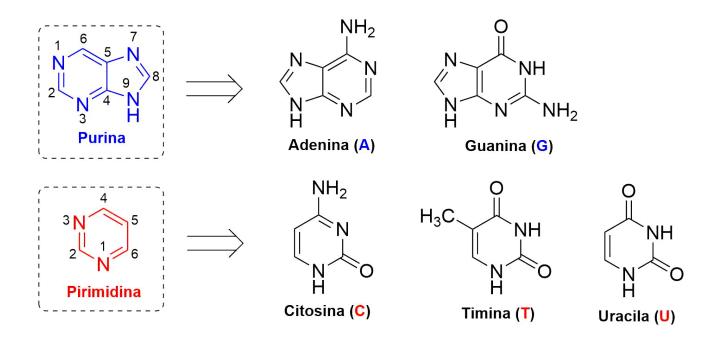
 NH_2 **Fosfato** 0 Base nitrogenada **ÖH** Azúcar


Grupo fosfato

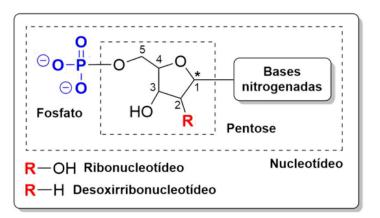

- Es el grupo que se encarga de mantener unidos los nucleótidos adyacentes. Esto significa que la forma en la que se van a unir los nucleótidos entre sí, es mediante este grupo fosfato con un enlace que se llama enlace fosfodiéster.
- Este enlace se da entre el carbono 3' de la hebra de ADN que se venía sintetizando, con el carbono 5' del nucleótido que está siendo incorporado.
- De los tres fosfatos que tengo al principio, me termino quedando con uno. Dos se pierden cuando formo el enlace fosfodiéster.

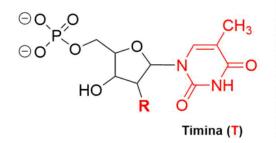
Enlace fosfodiéster

- El grupo fosfato interactúa con el carbono 5' y el extremo 3' OH libre de otro nucleótido.
- El nucleótido que se va a incorporar está abajo: va a formar un enlace fosfodiéster entre su carbono 5' y el carbono 3' que tiene un OH libre.
- Nunca voy a poder añadir un nucleótido en el extremo 5': la dirección de la síntesis casi siempre será de 5' a 3'.



Bases nitrogenadas


- A diferencia de la pentosa y el fosfato que no varían (siempre y cuando estemos hablando del mismo tipo de ácido nucleico), la base nitrogenada puede cambiar, pudiendo adoptar cuatro formas diferentes.
- Estas cuatro formas serán las que le den identidad al nucleótido.


ADN: Adenina, <u>Timina</u>, Guanina, Citosina

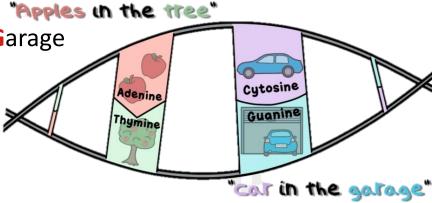
ARN: Adenina, <u>Uracilo</u>, Guanina, Citosina

Guanina (G)

EN EL ADN:

A-T: Adenina se une con Timina

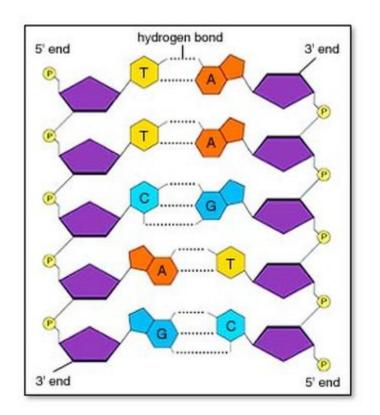
G-C: Guanina se une con Citosina

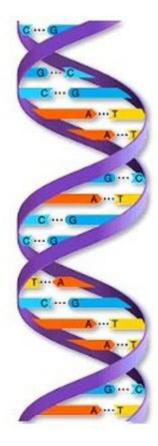

EN EL ARN:

A-U: Adenina se une con Uracilo

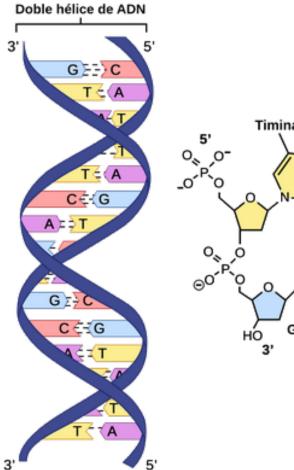
G-C: Guanina se une con Citosina

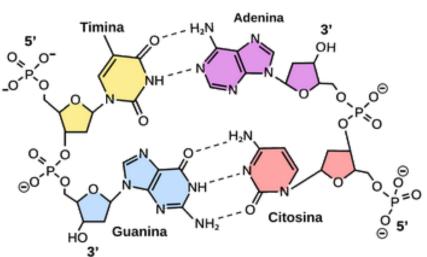
Aníbal Troilo y Carlos Gardel

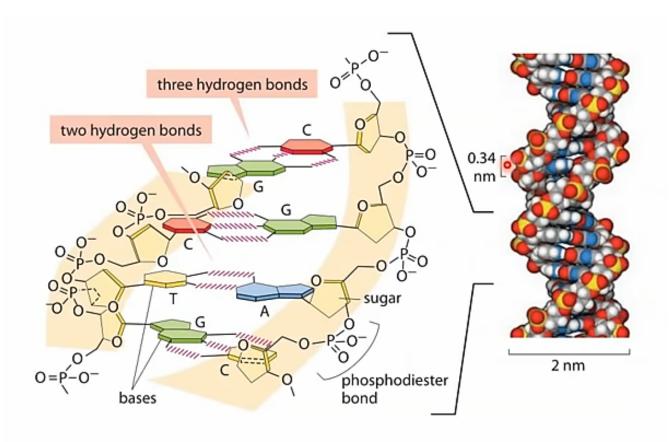

Apple Tree y Car Garage

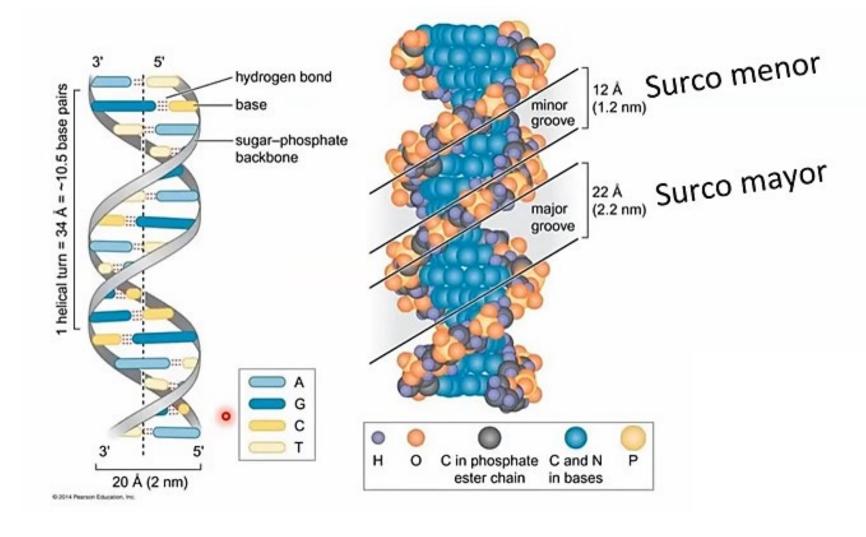


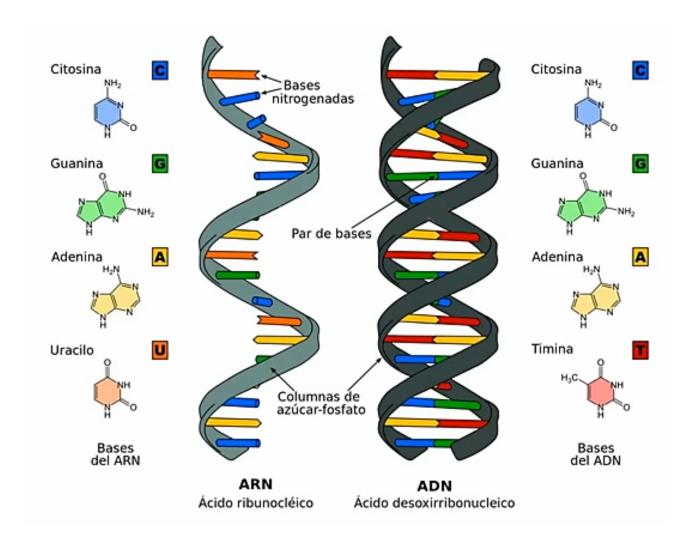
Una forma de recordar esto




- Planteado por Watson y Crick, se basa en la complementariedad de bases.
- Las dos hebras del ADN, además de ser complementarias, son antiparalelas. Para que los puentes de hidrógeno y todas las interacciones puedan disponerse de forma correcta, la hebra complementaria tiene que disponerse en el sentido opuesto.

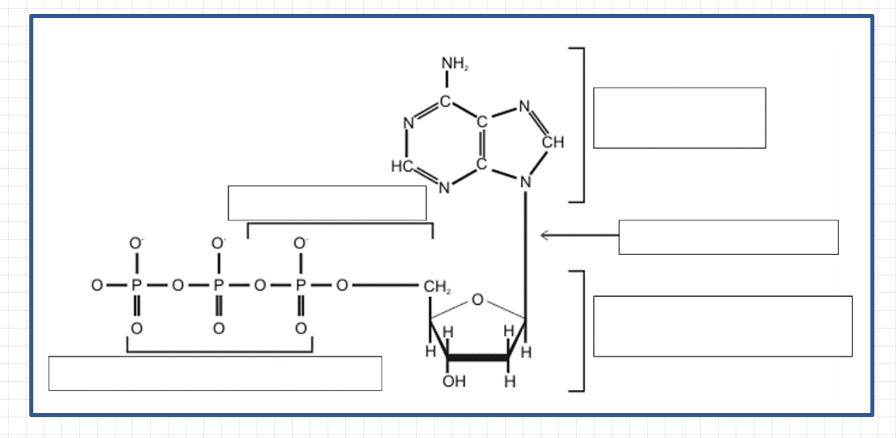



- La interacción entre una <u>Adenina</u> y una <u>Timina</u> está mediada por dos puentes de hidrógeno
- Por otra parte, entre una <u>Guanina</u> y una <u>Citosina</u> tendremos tres puentes de hidrógeno.


- Las azúcares y los fosfatos quedan hacia afuera, formando el esqueleto azúcar-fosfato.
 Por dentro quedan las bases nitrogenadas.
- Esta disposición es importante para proteger la información genética que reside en las bases nitrogenadas.

Diferencias estructurales

Proceso de replicación

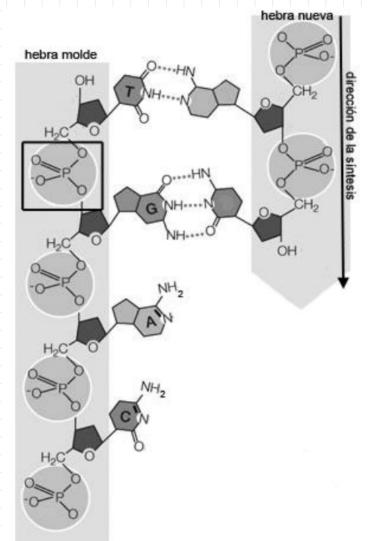

Hay una enzima, que es la ADN polimerasa, que se va a encargar de copiar el ADN a partir de una hebra molde (en gris). Esta enzima va a requerir de un cebador o primer, que es una secuencia de oligonucleótidos al principio que la ADN polimerasa utiliza como molde para iniciar la síntesis de ADN.

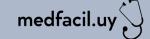
Este **primer** tiene su extremo *OH* libre <u>disponible</u> para formar un nuevo **enlace fosfodiéster y elongar la cadena.**

De este modo, se agrega un **nucleótido** con su extremo trifosfato libre y ahí da la formación del **enlace fosfodiéster** entre el 3' anterior y el 5' nuevo.

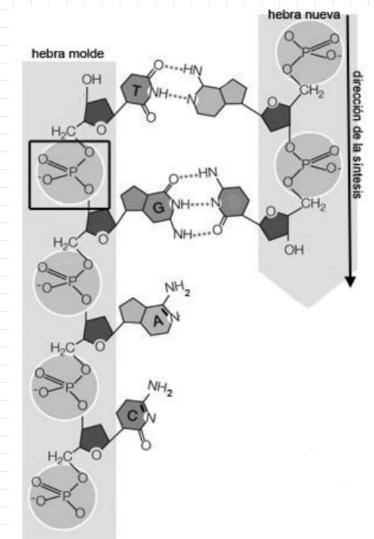
- 1 El ADN es una biomolécula formada por unidades repetidas, llamadas desoxirribonucleótidos.
 - a) Identifique sus componentes en la siguiente figura:
 - b) ¿Cuál de estos componentes contribuye con la información genética de cada organismo?

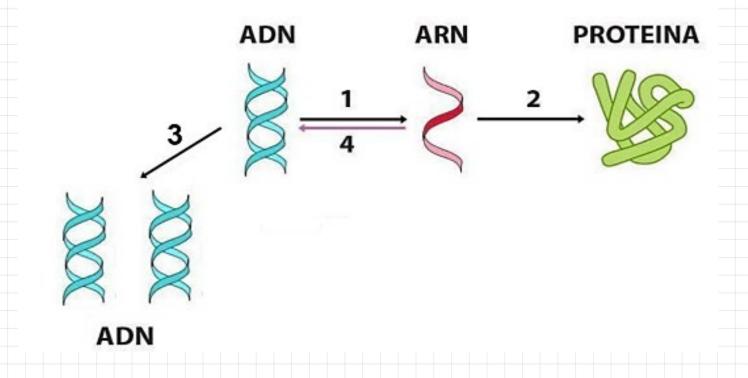
- Observe los ácidos nucleicos representados en la figura por A y B y responda a las siguientes consignas:
 - **a)** Identifique en cada molécula el extremo 5' y el extremo 3'
 - **b)** Englobe en un círculo los átomos que componen el esqueleto de la cadena de ácido nucleico
 - **c)** Identifique cuál es ADN y cuál ARN y escriba la secuencia de nucleótidos de este segmento de ADN o ARN.
 - d) Complete la siguiente tabla sobre las características de estos ácidos nucleicos


- 2 Observe los ácidos nucleicos representados en la figura por A y B y responda a las siguientes consignas:
 - d) Complete la siguiente tabla sobre las características de estos ácidos nucleicos


	ADN	ARN
FUNCIÓN		
LOCALIZACIÓN EN LA CÉLULA		
AZÚCAR		
BASES NITROGENADAS		
ESTRUCTURA SECUNDARIA		

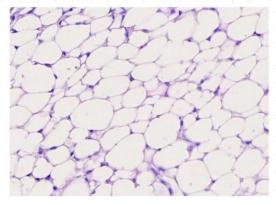
3 La siguiente figura muestra la estructura secundaria del ADN: formada por dos hebras antiparalelas y complementarias. ¿Qué significa esto?

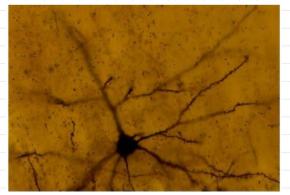

- **a)** Marque el extremo 5' y 3'de cada hebra, ¿cómo los puede identificar?
- **b)** ¿Qué enlaces unen las bases nitrogenadas entre las hebras? ¿Cuál es la unión entre bases más estable?
- c) ¿Qué componentes del desoxirribonucleótido son importantes para la formación del enlace fosfodiéster (rectángulo)?
- d) ¿En qué dirección ocurre la síntesis de ADN?



3 La siguiente figura muestra la estructura secundaria del ADN: formada por dos hebras antiparalelas y complementarias. ¿Qué significa esto?

- e) Indique cuales son las bases nitrogenadas que tiene la hebra nueva en la figura y cuáles se unirán a esta cadena en formación. Justifique su respuesta
- f) ¿Cuál es la secuencia de ADN complementaria a la secuencia 5'-GCAGCAGCAT-3'?
- **g)** ¿Cuál es la secuencia de ARN complementaria a la secuencia 5'-GCAGCAGCAT-3'?
- **h)** ¿Las secuencias dTMP-dGMP-dAMP-dCMP (TGAC) y dCMP -dAMPdGMP- dTMP (CAGT) transmiten la misma información genética?


4 Identifique los procesos involucrados en el Dogma central de la biología molecular. Indique en qué compartimiento tienen lugar en la célula eucariota.


5 La figura muestra dos tipos celulares diferentes: adipocitos y neuronas.

a) Si extraemos ADN genómico de estos dos tipos de células de una misma persona y los secuenciamos, ¿esperamos que tengan la misma secuencia nucleotídica?

b) Teniendo en cuenta la respuesta anterior, ¿cómo se explica que estas células sean diferentes y tengan funciones diferentes?

Tejido adiposo blanco teñido con Hematoxilina y Eosina

Neurona piramidal con Impregnación argéntica de Golgi.

CLASE 16

Preguntas múltiple opción

Indique la secuencia de ADN complementaria a 5'-TTGCGGAAG-3'

- a) 5'-AACGCCTTC-3'
- b) 5'-CUUCCGCAA-3'
- c) 5'-AACGCCUUC-3'
- d) 5'-CTTCCGCAA-3'
- e) 5'-ATGCCGATC-3'

Indique la secuencia de ADN complementaria a 5'-TTGCGGAAG-3'

- a) 5'-AACGCCTTC-3'
- b) 5'-CUUCCGCAA-3'
- c) 5'-AACGCCUUC-3'
- d) 5'-CTTCCGCAA-3'
- e) 5'-ATGCCGATC-3'

2 En la figura se muestra la replicación de una molécula de ADN, teniendo en cuenta que la hebra superior es la que está siendo usada como molde y que la flecha indica la dirección de la síntesis. Para que se genere el siguiente del enlace fosfodiéster:

- a) La guanina que se incorporará debe tener un grupo hidroxilo en el carbono 2´
- b) La citosina que se incorporará debe tener un grupo trifosfato en el carbono 5 ´
- c) La última citosina que se incorporó debe tener un grupo hidroxilo en el carbono 3´
- d) La última citosina que se incorporó debe tener un grupo hidroxilo en el carbono 2´
- e) La guanina que se incorporará debe tener un grupo monofosfato en el carbono 5´

2 En la figura se muestra la replicación de una molécula de ADN, teniendo en cuenta que la hebra superior es la que está siendo usada como molde y que la flecha indica la dirección de la síntesis. Para que se genere el siguiente del enlace fosfodiéster:

- a) La guanina que se incorporará debe tener un grupo hidroxilo en el carbono 2´
- b) La citosina que se incorporará debe tener un grupo trifosfato en el carbono 5´
- c) La última citosina que se incorporó debe tener un grupo hidroxilo en el carbono 3´
- d) La última citosina que se incorporó debe tener un grupo hidroxilo en el carbono 2´
- e) La guanina que se incorporará debe tener un grupo monofosfato en el carbono 5´

En la siguiente figura, la flecha señala:

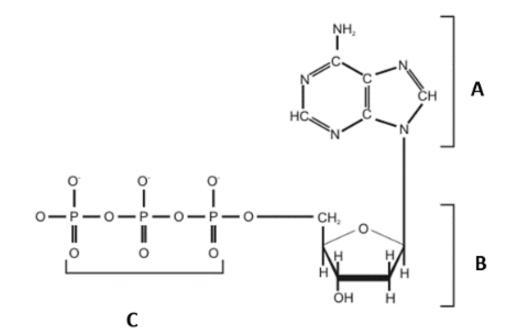
- a) el enlace fosfodiéster entre la desoxirribosa y la timina.
- b) el enlace fosfodiéster entre la ribosa y la timina.
- c) el enlace N-glicosídico entre la desoxirribosa y la timina.
- d) el enlace N-glicosídico entre la ribosa y la timina.
- e) los puentes de hidrógeno entre la timina y la adenina.

En la siguiente figura, la flecha señala:

- a) el enlace fosfodiéster entre la desoxirribosa y la timina.
- b) el enlace fosfodiéster entre la ribosa y la timina.
- c) el enlace N-glicosídico entre la desoxirribosa y la timina.
- d) el enlace N-glicosídico entre la ribosa y la timina.
- e) los puentes de hidrógeno entre la timina y la adenina.

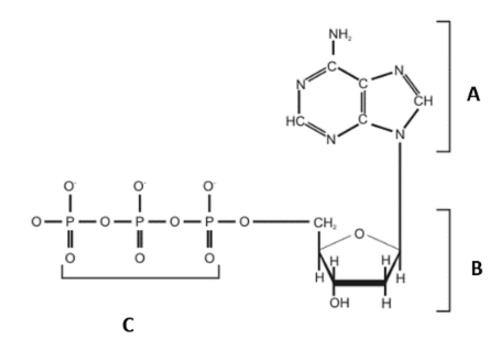
Respecto a la estabilidad de los ácidos nucleicos:

- a) El ARN es más inestable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 2´
- b) El ARN es más inestable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 3´
- c) El ARN es más estable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 3´
- d) El ARN es más estable que el ADN debido a la presencia del grupo hidroxilo en el carbono 2´
- e) El ARN es más inestable que el ADN debido a la presencia del grupo hidroxilo en el carbono 2´


Respecto a la estabilidad de los ácidos nucleicos:

- a) El ARN es más inestable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 2´
- b) El ARN es más inestable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 3´
- c) El ARN es más estable que el ADN debido a la ausencia del grupo hidroxilo en el carbono 3´
- d) El ARN es más estable que el ADN debido a la presencia del grupo hidroxilo en el carbono 2´
- e) El ARN es más inestable que el ADN debido a la presencia del grupo hidroxilo en el carbono 2´

5 En la siguiente molécula las estructuras señaladas con las letras A, B y C son:


- a) A: pirimidina, B: desoxirribosa, C: monofosfato
- b) A: pirimidina, B: desoxirribosa, C: trifosfato
- c) A: purina, B: ribosa, C: monofosfato
- d) A: purina, B: desoxirribosa, C: trifosfato
- e) A: base nitrogenada, B: desoxirribosa, C: monofosfato

En la siguiente molécula las estructuras señaladas con las letras A, B y C son:

- a) A: pirimidina, B: desoxirribosa, C: monofosfato
- b) A: pirimidina, B: desoxirribosa, C: trifosfato
- c) A: purina, B: ribosa, C: monofosfato
- d) A: purina, B: desoxirribosa, C: trifosfato
- e) A: base nitrogenada, B: desoxirribosa, C: monofosfato

¡Más preguntas para practicar disponibles en el cuestionario de preguntas que se encuentra a continuación de esta clase!

